








53% of mobile site visits are abandoned if 

pages take longer than 3 seconds to load

70% of mobile sites take longer than 10
seconds to load on 3G networks

https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/

https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/





Jakub Sowiński



Practical tips for optimising 
JavaScript



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



How to measure JS 
performance?







Tools















• Google PageSpeed Insights

• Google TestMySite

Other tools



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



How to improve JS 
performance?



Code manipulations



Original: 975 KB Minified: 235 KB -76%

BLOG



Original: 2649 KB Minified: 900 KB -66%

PROFILE EDITOR



Precompression



• Blog:
size: 235 KB -> 68 KB (-71%)
first meaningful paint: 4036 ms -> 3846 ms (-190 ms)

• Profile editor:
900 KB -> 221 KB (-75%)
first meaningful paint: 5519 ms -> 5404 ms (-115 ms)

Measurements









Treeshaking





-28% -7 KB



Code mainpulations
summary

• Minification

• Uglification

• Precompression

• Prepacking

• Treeshaking



size: 975 KB -> 228 KB (-77%)

first meaningful paint: 4661 ms -> 3846 ms (-18%)

time to interactive: 5560 ms -> 4880 ms (-12%)

Lighthouse score: 67 -> 74

BLOG



size: 2649 KB -> 900 KB (-66%)

first meaningful paint: 12129 ms -> 5519 ms (-55%)

time to interactive: 13760 ms -> 7310 ms (-49%)

Lighthouse score: 29 -> 57

BLOGPROFILE EDITOR



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



Code splitting



main.js (16 KB) vendor.js (215 KB)





• require.ensure(...)

• System.import(...)







• Main and vendor

• Route based chunking

• Lazy loading

Code splitting
summary



size: 228 KB -> 234 KB (+3%)

first meaningful paint: 3846 ms -> 3424 ms (-11%)

time to interactive: 4880 ms -> 4410 ms (-10%)

Lighthouse score: 74 -> 79

BLOG



size: 900 KB -> 923 KB (+3%)

first meaningful paint: 5519 ms -> 5170 ms (-6%)

time to interactive: 7310 ms -> 7100 ms (-3%)

Lighthouse score: 57 -> 59

BLOGPROFILE EDITOR



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



Caching



Service worker

• JS background worker

• Programmable proxy

• Control request-by-request

• Make app work offline







Registration



Installation and activation



Intercepting and caching requests





-30%



Tools

• Google Chrome 
Developer 
Tools

• Lighthouse



Other features

• Push API

• Background Sync



PRPL architecture

•Push critical resources for the initial URL route.

•Render initial route.

•Pre-cache remaining routes.

• Lazy-load and create remaining routes on demand.



• Service worker 
fundamentals

• Service worker lifetime

• Is service worker ready?

• Background sync and Push 
API

• PRPL architecture

Caching
summary




