








53% of mobile site visits are abandoned if 

pages take longer than 3 seconds to load

70% of mobile sites take longer than 10
seconds to load on 3G networks

https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/

https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
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Practical tips for optimising 
JavaScript



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



How to measure JS 
performance?







Tools















• Google PageSpeed Insights

• Google TestMySite

Other tools



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



How to improve JS 
performance?



Code manipulations



Original: 975 KB Minified: 235 KB -76%

BLOG



Original: 2649 KB Minified: 900 KB -66%

PROFILE EDITOR



Precompression



• Blog:
size: 235 KB -> 68 KB (-71%)
first meaningful paint: 4036 ms -> 3846 ms (-190 ms)

• Profile editor:
900 KB -> 221 KB (-75%)
first meaningful paint: 5519 ms -> 5404 ms (-115 ms)

Measurements









Treeshaking





-28% -7 KB



Code mainpulations
summary

• Minification

• Uglification

• Precompression

• Prepacking

• Treeshaking



size: 975 KB -> 228 KB (-77%)

first meaningful paint: 4661 ms -> 3846 ms (-18%)

time to interactive: 5560 ms -> 4880 ms (-12%)

Lighthouse score: 67 -> 74

BLOG



size: 2649 KB -> 900 KB (-66%)

first meaningful paint: 12129 ms -> 5519 ms (-55%)

time to interactive: 13760 ms -> 7310 ms (-49%)

Lighthouse score: 29 -> 57

BLOGPROFILE EDITOR



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



Code splitting



main.js (16 KB) vendor.js (215 KB)





• require.ensure(...)

• System.import(...)







• Main and vendor

• Route based chunking

• Lazy loading

Code splitting
summary



size: 228 KB -> 234 KB (+3%)

first meaningful paint: 3846 ms -> 3424 ms (-11%)

time to interactive: 4880 ms -> 4410 ms (-10%)

Lighthouse score: 74 -> 79

BLOG



size: 900 KB -> 923 KB (+3%)

first meaningful paint: 5519 ms -> 5170 ms (-6%)

time to interactive: 7310 ms -> 7100 ms (-3%)

Lighthouse score: 57 -> 59

BLOGPROFILE EDITOR



1. Why?

2. How to measure?

3. How to improve?

a) Code manipulations

b) Code splitting

c) Caching



Caching



Service worker

• JS background worker

• Programmable proxy

• Control request-by-request

• Make app work offline







Registration



Installation and activation



Intercepting and caching requests





-30%



Tools

• Google Chrome 
Developer 
Tools

• Lighthouse



Other features

• Push API

• Background Sync



PRPL architecture

•Push critical resources for the initial URL route.

•Render initial route.

•Pre-cache remaining routes.

• Lazy-load and create remaining routes on demand.



• Service worker 
fundamentals

• Service worker lifetime

• Is service worker ready?

• Background sync and Push 
API

• PRPL architecture

Caching
summary




